To form new stars, galaxies depend on a hydrogen gas supply. When the galactic food supply runs out, galaxies can't form new stars but survive using its own gas reservoir. At this point, galaxies are believed to be on a downhill slope towards its imminent death.
Along with several scientists, Swiss Federal Institute of Technology Zurich professor Kevin Schawinski conducted an investigation to determine the current shape of galaxies. They found that our Milky Way is nearing its end. In fact, it may have actually died billions of years ago already. This means, the Earth is living in the so-called "zombie galaxy."
But a new food supply is on its way. The Hubble space telescope detected a giant cloud of fiery gas hurling towards the Milky Way at breakneck speed.
The gas cloud was dubbed the "Smith Cloud" and named after PhD astronomy student Gail Smith who first discovered it in the 1960s. Ironically, the Smith Cloud has been rotating around the Milky Way's outskirts in the past 70 million years. It was once part of our own galaxy but was booted out in millions of years ago. Like the prodigal son, it's coming back home.
The Smith Cloud is currently traveling towards the Milky Way at approximately 700,000 miles per hour. If the Smith Cloud will become visible from Earth, it would have the diameter of 30 times bigger than the size of a full moon. What comes up must come down. The old saying is true even in space.
Experts said the Smith Cloud will probably reach the outskirts of the Milky Way in about 30 million years. Its entrance location is light years away from Earth but it doesn't mean that the Smith Cloud collision won't affect our solar system. The collision will give birth to new stars and will provide enough gas to generate 2 million suns.
"It's telling us that the Milky Way is a bubbling, very active place where gas can be thrown out of one part of the disk and then return back down into another," said Andrew Fox from the Space Telescope Science Institute, stressing that the Smith Cloud shows the galaxy is evolving with time.