Cancer is a huge obstacle and challenge in the medical world and numerous studies have been done in order to find ways to cure or treat the deadly disease. Some researchers focus on developing drugs that would help patients cope with the harsh effects of chemotherapy, while others look into natural treatments.
Tech Times reported on March 24 that a doctor stumbled upon a cure for sepsis and the key is vitamin C. We also reported on March 27 that researchers from the University of Salford Manchester tested different natural substances on cancer stem cells and found that vitamin C seems the most promising in obliterating them. Now a team of researchers from the University of Iowa released the results of their clinical trials and it backs up the vitamin C claim.
Vitamin C And Cancer
A team of researchers from the Holden Comprehensive Cancer Center at the University of Iowa looked into the effect of vitamin C in cancer cells, specifically, brain cancer glioblastoma multiforme (GBM) and non-small cell lung cancer (NSCLC).
The trials tested the idea that a regular high dose of vitamin C is a safe and effective anti-cancer agent when combined with chemotherapy and other radiation treatments. The researchers also focused on two specific forms of cancer that have the least improvement in terms of treatment.
"These two diseases really haven't had a significant improvement in outcomes for two or three decades," study author and UI assistant professor of radiation oncology Bryan Allen said.
How It Works
There's a saying that anything in excess is bad for the body, but it seems the human body makes an exception when it comes to fighting cancer.
This is because the dosage of vitamin C that is delivered intravenously is actually 1,000 times higher than the concentration a healthy person has in their blood stream, which is about 70 micromolar. How so? The target is to get the cancer patient's blood to have up to 20,000 micromolar of vitamin C.
What happens is that the high concentration of vitamin C messes up the cancer cell metabolism by disrupting the iron levels in the cells. This, in turn, causes excess iron to react to the vitamin C and generate free radicals that can weaken and kill DNA. When this happens, the chemotherapy and radiation can easily kill the cancer cells.
The best part is that the trials showed no serious side effects to the patients who participated and there was also an overall increase in the survival rate.
The Future Of Vitamin C vs Cancer Trials
The research, titled "O2⋅- and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate," was published in the journal Cancer Cell on March 30. It contains the results of the first phase of the clinical trials, as well as a small portion of the Phase II results.
"Results look promising but we're not going to know if this approach really improves therapy response until we complete these phase II trials," Allen said.